The Complex Ginzburg-Landau Equation with Weak Initial Data

نویسنده

  • Jiahong Wu
چکیده

In this paper we investigate the existence and regularity of the solutions to the complex Ginzburg-Landau equation, @ t u = Au + (a + ii))u ? (b + ii)juj 2 u, on the phase space L r;p (R n) of weighted L p functions in innnite domain R n of arbitrary spatial dimensions. The unique local strong solutions are established for subcritical , i.e., r > n p ? 1. Especially, the classical Lebesgue phase space L p and the Hilbert phase space H r are included.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

The Solution of Fractional Nonlinear Ginzburg–landau Equation with Weak Initial Data

In this paper, we study the solution of the fractional nonlinear Ginzburg-Landau(FNGL) equation with weak initial data in the weighted Lebesgue spaces. The existence of a solution to this equation is proved by the contraction-mapping principle.

متن کامل

Initial Boundary Value Problem for Generalized 2d Complex Ginzburg–landau Equation*

In this paper we study an initial boundary value problem for a generalized complex Ginzburg–Landau equation with two spatial variables (2D). Applying the notion of the ε-regular map we show the unique existence of global solutions for initial data with low regularity and the existence of the global attractor.

متن کامل

Localized Patterns in Periodically Forced Systems

Spatially localized, time-periodic structures are common in pattern-forming systems, appearing in fluid mechanics, chemical reactions, and granular media. We examine the existence of oscillatory localized states in a PDE model with single frequency time dependent forcing, introduced in [22] as phenomenological model of the Faraday wave experiment. In this study, we reduce the PDE model to the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007